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The reversible enthalpy change of the metallic 
glass Fe4oNi40B20 - Experiments and simulation 
in the activation energy spectrum model 

E. WOLDT 
Institut fiJr Werkstoffe, Technische UniversitM Braunschweig, Postfach 3329, 
D-3300 Braunschweig, Federal Repubfic of Germany 

The activation energy spectrum model can be used quite successfully to explain various 
aspects of the kinetics of structural relaxation in metallic glasses. In order to describe the often 
observed reversible component in a more quantitative way in the framework of this model an 
expression for the temperature dependence of the reversible part of the activation energy spec- 
trum is derived. Using this expression three experiments concerning the reversible enthalpy 
change during structural relaxation are simulated and the results are compared with the actual 
experimental traces. 

1. I n t r o d u c t i o n  
Due to the inherently metastable character of the 
amorphous structure of metallic glasses the atoms are 
on the whole in less stable configurations than in 
crystals. Thermal activation will induce rearrange- 
ments for groups or single atoms. The sharply defined 
activation energies for these movements in crystals are 
likely to be smeared out in the case of an amorphous 
structure into a spectrum of activation energies. 

This is a consequence of the different resultant force 
different atoms experience since their respective neigh- 
bouring atoms are in (merely) statistically predictable 
positions. The so-called activation energy spectrum 
(AES) model utilizes this idea as a starting point in 
its attempt to model some of the basic aspects of 
structural relaxation in metallic glasses. 

This model has been used quite successfully to 
explain such phenomena as the often observed log- 
time kinetics of  structural relaxation, the crossover 
effect and the reversibility of  some property changes 
on cycling the annealing temperature. 

This paper intends to show how the until now 
unspecified temperature dependence of the reversible 
component of the activation energy spectrum can be 
derived from a few assumptions. A comparison with 
some of  the experimental data on this subject is 
included as well. 

2. The basic features of the activation 
energy spectrum model 

In the activation energy spectrum model an isothermal 
property change AP during structural relaxation is 
described by 

AP = f :  c(E)q(E, T) 

x {1 - exp [ - v  t exp ( -  E/k T)]} dE (1) 

where E stands for the activation energy, T the absol- 

0 0 2 2 - 2 4 6 1 / 8 8  $03.00 + .12 �9 1988 Chapman and Hall Ltd. 

ute temperature, t the time and v the Debye frequency. 
The function q(E, T) represents the potential number 
of processes available for relaxation with activation 
energy E at the annealing temperature T. The coupl- 
ing function c(E) determines how much property 
change a single relaxation process at activation energy 
E will contribute to the total change. The characteristic 
annealing function 0 

O(E, T, t )  = 1 - e x p [ - ~ v t e x p ( - E / k T ) ]  (2) 

varies between 1 and 0 and gives the probability that 
a relaxation process with activation energy E has 
taken place after time t at temperature T. For the origin 
of this equation see Primak [1]. With increased time 
t this function appears to sweep along the energy axis 
and the higher the annealing temperature is the faster 
this happens [2]. 

For  many purposes a step approximation of 0, 
situated at 

E o = k T l n  (v t) (3) 

can be used with sufficient accuracy. 
The potential number of processes available for 

relaxation q(E, T) is given by the difference of the 
distribution present at the beginning of the current 
experiment Q(E) and the time-independent so-called 
"equilibrium" distribution q~(E, T) for the actual 
annealing temperature 

q(E, T) = Q(E) - qs(E, T) (4) 

(Equilibrium here refers to an ideal glass structure, 
thermodynamically of course the glassy state can only 
be metastable.) The initial distribution Q(E) can 
either be a quenched-in distribution, in other words 
the result of  some preceding treatment where the tem- 
perature was not known or not constant), or the result 
of a previous isothermal anneal hence another equilib- 
rium distribution qs(E, T') (though only up to a cer- 
tain activation energy as determined by the duration 
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and temperature of that preceding anneal, e.g. 
approximately given by E0). 

The assumption of a temperature dependent equilib- 
rium distribution qs(E, T)  already implies the occur- 
rence of reversibility effects during temperature cycling. 
However a quantitative analysis of experimental data 
of the reversible component of structural relaxation 
in metallic glasses can only be carried out on the basis 
of a well defined temperature dependence of the 
equilibrium distribution. 

Of course this is also necessary in order to simulate 
the enthalpy change during constant heating rate ex- 
periments. Details will be described later but for initial 
simulations a temperature dependence of q~(E, T)  
given by (Tf - T)  -~/3 was used following a suggestion 
by Leake et al. [3]. The temperature Tf here corre- 
sponds to a kind of fictive temperature. However com- 
paring the simulated results with the experimental data 
the ratio of the peak heights of the simulated endo- 
thermic and exothermic peaks was much to small. 
Only moving Tr very close to the final temperature of 
the heating ramp improved the situation. This, how- 
ever, had to be rejected as physically rather unrealistic 
and initiated a close study of the temperature depen- 
dence of the equilibrium distribution qs(E, T).  

3. The temperature dependence of the 
equilibrium distribution qs(E, T) 

The basic situation for reversible structural relaxation 
in metallic glasses can be described in simple terms by 
an ensemble of two level systems (TLS). Each level of 
a system represents the energy of one of two con- 
figurations in which a single atom or group of atoms 
can be found (see, e.g. [2] or [4]). In this picture any 
amorphous structure is determined by a particular 
distribution of populated (and unpopulated) levels. By 
grouping together all systems with the same energy 
difference between the levels (here called the level gap 
A) a particular structure is equivalent to a population 
set. The partition of one TLS now describes how many 
sites with the same gap A are found in the higher or 
lower energy state. The population set will change 
under thermal activation if the actual structure does 
not correspond to the partitions required by the 
momentary temperature. For example in the case of 
the as-quenched structure the population set might in 
part correspond to a higher temperature, the tem- 
perature of the quench. Under subsequent annealing 
(and even at room temperature) the population of the 
TLSs will change and approach an equilibrium state 
where changes forth and back over the activation 
energy barrier cancel in their net effect. (This however 
is a very simplified picture. In reality the level systems 
are coupled and population changes in one system will 
affect the levels (or the energy barrier) in other systems 
[5] which reflects the metastable character of the 
amorphous structure and in the long-run leads to its 
crystallization.) A change in the population of the two 
levels in order to form an equilibrium with the require- 
ments of the momentary temperature is connected to 
a change in enthalpy due to the gain or loss of poten- 
tial energy. (For simplicity the connected change in 
entropy will not be considered here.) 
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This allows calculation of the energy content of the 
upper level in equilibrium for sites of a chosen acti- 
vation energy E. In equilibrium the population of the 
two levels (n ~, n 2) does not change 

dnl/dt  = dn~/dt = 0 (5) 

For small deviations from equilibrium the rate of 
change is assumed to follow a first-order chemical rate 
equation 

dn/dt = - vn (6) 

where v, the attack frequency, is given by 

v = v0 exp ( - E / k T )  (7) 

reflecting the thermal activation of the process. With A 
representing the energy difference of the two levels (see 
Fig. 1) the flow forth and back can then be written as 

dn/dt(1 ~ 2) = nlvo exp ( - E / k T )  (8) 

dn/dt(2 --+ 1) = nZvo exp [ - ( E  + A)/kT] (9) 

In equilibrium dn/dt(1 ~ 2) = dn/dt(2 ~ 1), n t = nl 
holds and hence 

nl/n 2 = exp ( - A / k T )  (10) 

gives the Boltzmann partition for the two levels in 
equilibrium. If it is further assumed that the number 
of sites having two levels with an energy gap A is 
constant 

1 2 ( 1 1 )  C(A) = ns + ns 

this can be used to express the number of sites in 
configuration 1 under equilibrium conditions 

 I(A, T) 

= C(A) exp ( - A / k T ) / [ 1  + exp ( - A / k T ) ]  (12) 

For a chosen activation energy barrier E the level split 
A is not fixed but can in principle take any positive 
value. (In the case of a negative gap the situation is 
just the mirror image of the same configuration with 
a positive difference and thus is covered only consider- 
ing positive values for A.) The "excess" energy content 
of the "upper" configuration (level 1) referred to level 
2 at any activation energy E is given by the integral 
over all possible gaps A 

~(T) = Ion~(A' T)A dA 

= Io C(A) exp ( -A/kT) / [1  + exp ( -A/kT) ]A dA 

! 
(13) 
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Figure 1 Energy levels for a schematic TLS. 



If it is assumed, for simplicity only, that C(A) is a 
constant (= CA), the above integral can be evaluated 
substituting A/kT  = x 

e(T) = C~k2T 2 fo  x/[exp (x) + 1] dx 

= Cak2T2rc2/12 (14) 

(for the integral see, e.g. [6]). 
The last assumption implies that independently of 

the magnitude of the energy gap A there will be a 
constant number of sites with that gap. Obviously this 
is unrealistic for large values of A. A slightly more 
realistic approach is given by a constant distribution 
C(A) which falls off to zero at a certain value of A. As 

can be seen from Equation 14 this will only change the 
value of the numerical result of the integral but not the 
temperature dependence of e (T). In the even more 
realistic case where C(A) falls off to zero over a finite 
range the substitution of the integral will lead to a 
slightly modified temperature dependence of e(T). 
This, however, will not be very different from the T 2 
dependence but since it is difficult to handle analyti- 
cally if C(A) cannot be expressed as C(x) it is excluded 
from the rest of the discussion. 

Compared with the situation at absolute zero the 
structure contains additional enthalpy at any other 
temperature. The temperature dependence of this 
additional enthalpy can therefore generally be 
expressed by 

~(E, T) = A (E)T  2 (15) 

where A(E) is constant for a fixed activation energy E. 
In the AES-model the additional enthalpy at a chosen 
activation energy E is given by the number of processes 
available for relaxation (with respect to absolute zero 
where no relaxation processes are possible) times the 
enthalpy that any of these processes releases during 
relaxation. In the formalism of the AES-model this 
can be written as 

q~(E, T)caH(E ) = e(E, T) (16) 

This assumes implicitly that the equilibrium distri- 
bution q~(E, T) equals zero at T = 0. caHis the coupl- 
ing function for the property change, in this case the 
enthalpy. 

By combining both equations above, an expression 
for the temperature dependence of the equilibrium 
distribution q,(E, T) of the AES-model emerges 

q~(E, T) = A(E)/cAH(E)T 2 = no(E)T 2 (17) 

This means that the equilibrium distribution of 
processes available for relaxation is defined by the 
absolute temperature and a function no(E ) which 
depends only on the activation energy. The shape of 
the equilibrium distribution is given by no(E) and the 
magnitude of the distribution at any activation energy 
E varies according to a T 2 dependence. 

It should be noted that the derivation of Equation 
14 is consistent with the recently developed, less 
approximate version of the AES model given by 
Hygate and Gibbs [7]. The treatment above also 
includes the term representing the transition from the 
lower energy state to the higher energy state. The 
interpretation of the meaning of q~(E, T) however 

differs from the new version of the model as pointed 
out by Hygate and Gibbs [7]. 

4. The coupling function for the 
enthalpy change in the AES model 

According to the AES model any property change on 
structural relaxation is described by Equation 1 
above. An isothermal anneal for time t~ at high tem- 
perature T~ will establish the equilibrium distribution 
of possible relaxation processes qs(E, T1) as far as 
approximately kTl ln(v0t~) along the activation 
energy axis. Any further isothermal anneals for tem- 
peratures smaller than 7"i and for times less than tj will 
cause property changes which correspond mainly to 
establishing the first part of a new equilibrium distri- 
bution. These changes, given the right experimental 
conditions, ought to be reversible. 

If a second isothermal anneal at T 2 for a duration t2 
is assumed, the measured property change at any time 
during the second anneal can be described by 

AP(t) = fo c(E) 

x (q~(E, T,) - qs(E, T2))O(E, T2, t) dE (18) 

If, for simplicity, the step function approximation for 
O(E, T2, t) is used the above equation becomes 

AP(t) = S ~ c(E)(qs(E , T,) - qs(E, T2))dE (19) 

with E0 = kT2 In (v 0t). Using the expression 
developed for qs(E, T) in the previous section this 
simplifies to 

AP(t) = (T21 - T22) f~o c(E)no(E ) dE (20) 

In the case of the enthalpy change as the property 
change a sensible hypothesis about the shape of the 
coupling function c(E) can be made. As described 
in the previous section a certain activation energy 
(barrier) E will not be connected only with one TLS 
but will be found with a multitude of systems. Or, to 
put it the other way round, the level gap A to a first 
approximation will be independent of the barrier 
height in a system of isolated wells. This suggests that 
more or less the same distribution of A will be found 
with any chosen activation energy barrier E, be it 
small or large. Therefore a configuration change will 
produce on average the same change in potential 
energy independent of the activation energy necessary 
to induce this switch. 

Under these assumptions the coupling function 
CAH(E) for the enthalpy can be treated as a constant, 
CAH. Equation 20 simplifies to 

AH(t) = (T~ -- T~)cau f~o no(E)d E (21) 

In this form the time dependence of the upper limit of 
the integral (see Equation 3) can be used to derive 
information about no(E ) from measured traces for 
AH(t) using the time derivative on both sides of the 
equation. A somewhat easier approach (considering 
the problems of determining the time derivative of 
experimentally measured functions with inevitable 
inaccuracies) is to choose a sensible distribution for 
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no(E) and see how this fits the measured curve. This of 
course will not necessarily produce a unique solution. 
For the result of this procedure see below. 

5. Measured and calculated enthalpy 
change during temperature cycling 

Fig. 2 (symbols) shows the result of a DSC experi- 
ment measuring the reversible enthalpy change of 
Fe40Ni40B20 by Sommer et al. [8]. Here the reversible 
heat flow dAHre/dt was measured during isothermal 
periods at different annealing temperatures after steps 
of 20 K on a previously fully relaxed specimen [8]. The 
samples were cycled several times between two levels 
with a heating rate of dT/dt = 320Kmin -~ and 
measured. Then the annealing temperature was 
increased by a further 20 K for a new cycle. Positive 
and negative heat flow was observed and integration 
gave the reversible relaxation enthalpy 

AHre = fo IdAHre/dt! dt (22) 

To account also for the short time interval during 
which the calorimeter had not reached equilibrium an 
extrapolation was used. The values so determined are 
plotted against the annealing temperature in Fig. 2 
(symbols). Clearly a temperature dependence is 
noticeable. Equation 21 allows the effect of this kind 
of experiment in the AES model to be calculated. The 
temperature dependence in the equation is caused by 
the T 2 factor and the temperature dependence of the 
upper limit of the integral. Sommer et al. do not give 
the duration of their step anneals so a time of 180 sec 
was chosen to simulate their experiment. This should 
be sufficient since in an earlier paper [9] the same 
authors reckon that the reversible enthalpy reaction 
only takes about 100 sec. 

There remains the choice of the shape of the distri- 
bution no(E). For reasons that will be explained later 
a normalized Gaussian was used. By trial and error it 
was established that a centre value of E0 = 1.9 eV and 
a width a = 0.18 eV gave a good fit to the experimental 
data for Fe40Ni40B20. The result is also shown in Fig. 
2 (dashed line). Since the value of the coupling con- 
stant cA His not known the calculated curve was scaled 
using the experimental point for the highest tern- 
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Figure 2 Data by Sommer et al. [8] for Fe40Ni40B20 (&) and 
calculated fit using a z T temperature dependence. 
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T A B L E  I Reversible enthalpy changes obtained from heat flow 
measurements after cooling and heating [I0]. 

7'2 AH(600 ---, T2) AH(T2  ---} 600) 
(K) (Jmo1-1 ) (Jmol I) 

590 - 2 5  15 
570 - 4 0  40 
550 -- 55 30 
530 - 35 15 
510 - 2 4  7 

perature. It has to be emphasized that the chosen 
distribution may still not give the best fit possible. 

A further experiment investigating the reversible 
enthalpy change of Fe40Ni40B20 was carried out by 
G6rlitz et al. [10]. After an initial anneal to remove 
any irreversible relaxation effects (30min at 620K) 
the specimens were subjected to temperature steps 
between 600 K and a lower temperature T2. While the 
temperature was held either at 600 K or T2 for 15 rain 
the heat flow dHT/dt was recorded. The enthalpy 
change AH was then obtained by G6rlitz et al. inte- 
grating over dHT/dt with the lower limit equal to 
30 sec (for experimental reasons) and the upper to 
900 sec. Table I gives the results. 

The values show that cooling is followed by an 
exothermic reaction and heating causes endothermic 
relaxation. This experiment can also be simulated in 
the AES model using Equation 21. Now, however, the 
lower limit of the integral also becomes temperature 
dependent. Care has to be taken especially in calculat- 
ing the heating-up values. In this case the upperfimit 
for the integral has to be kTz In (v0 900sec) even 
though the annealing function will move further along 
the energy axis at 600 K. However, the distribution 
beyond the above energy has not been altered by the 
low temperature anneal at T2 and hence will not con- 
tribute to the endothermic reaction. Using the same 
distribution and scaling factor as for the data by 
Sommer eta[. in Figure 2, the results of the simulation 
together with the values from Table I are presented in 
Fig. 3. The contours shown are calculated assuming 
different starting times for the integration of the heat 
flow after the temperature has reached its fixed level. 
The agreement is good considering the experimental 
error of 10% [11] especially since no further scaling 
was done. 

To overcome the instrumental problems which dis- 
torted the heat flow at the beginning of the isothermal 
periods G6rlitz et al. also used a modified measuring 
procedure. In this case the difference between two runs 
was taken; one of which was completing the full cycle, 
while the other one only undertook the changes during 
the temperature ramps and omitted the isothermal 
anneals. By assuming that the distortions due to the 
fast ramps were the same for both runs, the difference 
gave the integrated heat flow for the entire duration of 
the isothermal period. 

In a further experiment using this modified 
procedure, G6rlitz et al. [10] varied the length of the 
isothermal periods at 530 K before measuring the heat 
flow after reheating to 600 K. The result is shown in 
Fig. 4 (full line) together with the values calculated 
from the AES model with the lower integration limit 
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Figure 3 Reversible enthalpy 
changes in the experiment of 
G6rlitz et al. [10] (o). The con- 
tours are calculated using the AES 
model for different lower integra- 
tion limits. (a) AH (600K ~ T2) 
(b) AH (Tz ~ 600 K). 

assumed to be 0.1 sec. The agreement is good for short 
times; at later times the calculated curve (dashed) is 
still increasing while for the measured points the rise 
clearly slows down. On the activation energy scale the 
last point corresponds to 1.72 eV which is still on the 
rising flank of the Gaussian distribution chosen (cen- 
tred at 1.9 eV). Therefore the deviation in Fig. 4 seems 
to indicate that in this range the Gaussian shape is no 
longer a good approximation of the true distribution. 

6. S i m u l a t i o n  o f  a n i s o t h e r m a l  
m e a s u r e m e n t s  o f  a p p a r e n t  s p e c i f i c  
h e a t  

6.1. Basis of the s imulat ion 
Fig. 5b shows the result of a DSC experiment to 
measure the enthalpy change of Fe40Ni40B20 on linear 
heating (Majewska-Glabus et al. [12]). One as-quenched 
and a number of preannealed specimens have under- 
gone a linear heating program (dT/dt = 20 K rain-~ ) 
followed by rapid cooling back to room temperature 
and a second scan with 20 K min -l. The difference 
between the first and second heating run is plotted 
against the annealing temperature in Fig. 5. The per- 
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Figure 4 Reversible enthalpy change recorded at 600 K after pre- 
anneals of different duration at 530K [10]. The dashed curve is 
calculated using the AES model. 

centage values refer to the preannealing temperature 
as a fraction of the glass temperature Tg (which was 
assumed to be 685 K). The duration of the preanneals 
was always 15 rain and the temperature scans extended 
to 20 K below the glass temperature. 

This kind of experiment can also be simulated using 
the AES model. In this case, however, reversible and 
irreversible effects contribute to the result and the 
temperature is not constant. Therefore a simplified 
equation like Equation 21 cannot be used. If we retain 
the assumption that the coupling function c(E) for the 
enthalpy change is a constant, CAW, and that the tem- 
perature dependence of the equilibrium distribution is 
given by T 2, Equation 23 describes the isothermal 
enthalpy change at temperature T of an arbitrary 

T o  . . . . . . .  

-10 t I I 

<1 .T 0 - - -  
r e f 

ex0 

-10 J i 
400 500 600 

T[K) 

Figure 5 DSC curves for as quenched and preannealed specimens of 
Fe40 Ni40 P20 (top) and Fe40Ni40 B20 (bottom) plotted with respect to 
the second scan, t a = 15 rain. (a) as quenched 52%, 56%, (b) 62%, 
(c) 67%, (d) 71%, (e) 75%, (f) 80% of Tg. 
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T A B L E I ! Flow chart of  the thermal history simulated for the "samples". 

Equilibrium spectrum for Tr 
I 

Secondary cooling to about room temperature in 1 sec 

One year at room temperature 

I 
Ramp (5 K sec i) plus 

preanneal at 485 K 
for 15rain 

Exponential cooling 
to room temperature 

in 20 sec 

I 
Linear heating ramp 

with 20 K min - 1 
I 

Exponential cooling 
to room temperature 

in 20 sec 

Linear heating ramp 
with 20 K rain- 

I 
Ramp (5 K sec -l  ) plus 

preanneal at 514 K 
for 15min 

Exponential cooling 
to room temperature 

in 20 sec 

I 

initial distribution of processes Q(E) 

AP(T, t) = cau fo (Q(E) - no(E)T2)O(E, T, t) dE 

(23) 

This equation allows a linear heating program to be 
treated as a succession of small isothermal steps 
whereby the final distribution at the end of one step is 
used as the initial distribution for the next step at 
slightly different temperature. At the new temperature 
a new equilibrium distribution is required and a small 
change in kinetics (0 function) will also take place. 
During the "isothermal" time of the step this will 
modify the distribution (and contribute to the 
property change) and produce a new final distribution 
which will become the initial distribution for the next 
step. 

Along these lines a Fortran program was developed 
that approximates the linear heating ramp by 200 
isothermal steps. For  each step the change in the 
spectrum which ranges from 0 to 2.25 eV was cal- 
culated for 200 nodes based on the "isothermal" 
Equation 23. To obtain the property change per step 
the change in distribution at all nodes was then added 
up. Since all temperature steps are of the same dura- 
tion the property change per step is equivalent to a 
rate of property change for the linear ramp. A further 
summation over this rate yields the total property 
change. 

6.2. Initial conditions and simulated 
treatment 

Two further questions had to be answered before the 
calculation could start: (1) What was to be chosen as 
starting distribution? and (2) What thermal history 
had to be considered for each specimen? The starting 
spectrum was assumed to represent the equilibrium 
distribution q~(E, T) of the temperature at the 
moment of the quench. This temperature can only be 
guessed and the limits are the glass temperature and 
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the melting point. Under normal circumstances this 
equilibrium cannot be achieved again without crystal- 
lizing the specimen. This is equivalent to the concept 
of the fictive temperature (see, e.g. Egami [13]) and this 
temperature will, therefore, be called Tf from now on. 
In addition it was assumed that the material does 
undergo secondary cooling when it lifts off the melt 
spinning wheel during the production processl For the 
purpose of the program, this was treated as exponen- 
tial cooling from the quench temperature (taken as Tr) 
to 10 K above room temperature in l sec plus linear 
cooling for 10 sec for the remaining 10 K temperature 
difference. Further it was assumed that the material 
had been stored at room temperature for one year 
before it was actually used in the DSC experiment. 

This treatment was taken to define the distribution 
of possible relaxation processes present at the begin- 
ning of the real experiment for "as-quenched" 
material. The simulation usually looked at three 
"specimens". The first one was calculated to represent 
an "as-quenched" sample. This comprised a linear 
heating ramp followed by an exponential cooling back 
to about room temperature (in 20 sec) and a second 
heating ramp. In addition two "preannealed" speci- 
mens were calculated. Here the thermal history con- 
sisted of a quick ramp up to the annealing temperature 
(dT/dt = 5 K sec) and a 15 min anneal followed by an 
exponential cooling back to room temperature and 
then the same treatment as for the "as-quenched" 
specimen. Since the main interest was to see whether 
the endothermic effects observed in the real experi- 
ment could be reproduced, the preannealing tem- 
peratures were chosen as 71% and 75% of the glass 
temperature (compare with Fig. 5). The flow chart in 
Table II summarizes the thermal history of all 
"samples" during the different stages of the simulation. 

6.3. Results and discussion of the simulation 
Initially, mainly for simplicity, a box spectrum extend- 
ing from 0 to 2.25 eV was chosen for no(E), the shape 
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of  the equilibrium distribution qs(E, T). The fictive 
temperature was taken from the interval 700-1000 K 
and the temperature dependence of  qs(E, T) was 
assumed to be (Tr - T) 1/3 [3]. 

However, after a few simulation runs varying Tf it 
became clear that any distribution including acti- 
vation energies significantly less than 1 eV would 
produce an endothermic peak on the as-quenched 
curve of similar magnitude as for the preannealed 
samples. This peak is due to the low energy processes 
relaxing during the secondary cooling and the subse- 
quent one year at room temperature. These processes 
are reinstated during the first part of  the heating ramp 
because of the shift of  the equilibrium distribution to 
higher values. Experimental evidence (see, e.g. [8]) 
suggested a bell shaped spectrum of much smaller 
extent. Therefore, Gaussian shaped distributions fall- 
ing off to very small values below 1 eV were used for 
further simulations. These did reduce the height of the 
peak on the as-quenched curve drastically. However 
the ratio of peak heights between endothermic and 
exothermic peaks was still too small compared with 
the real data (Fig. 5). As mentioned before only 
moving Tf very close to the upper temperature of the 
heating ramp improved this situation. This was rejected 
as physically rather unrealistic. 

A small theoretical study as outlined above showed 
that a T2-dependence for the equilibrium distribution 
might be close to the real situation. Further simulation 
runs were calculated under this assumption. By choos- 
ing Tf and so defining how much irreversible (in the 
sense of  non-reinstateable) contribution was present 
in the initial "material" the peak ratio could be 
adjusted to resemble the experimental data. Based on 

Figure 6 Simulation runs of the apparent  specific heat of 
Fe40Ni40Bz0 as in the experiment by Majewska-Glabus et al. [12] 
(Fig. 5) with initial fictive temperatures of (a) 710 K, (b) 800 K and 
(c) 1000K. a = 0.38, (a as quenched, b 71%, c 75%, d 80%). 

the measurement of  the self-diffusion energy of  iron in 
Fe40Ni40 B20 by Horvath et al. [4] which gave a value of 
2.4 eV, the Gaussians were centred at 2.4 eV as well. 
Fig. 6 shows the result of three complete simulations 
with the initial fictive temperatures of 710K, 800K 
and 1000 K using the above Gaussian with a width of 
o- = 0.38 eV. 

All three runs show endothermic peaks (note the 
different scales) and the ratio of  peak heights between 
endothermic and exothermic peaks depends strongly 
on the choice of Tf.. While the overall features 
resemble the experimental traces quite well, there are 
differences in detail, so the endothermic peaks on the 
as-quenched and 71% curve. These become more pro- 
nounced for lower Tf values. For Tr = 800 K the peak 
ratio for the 75% curve is well matched with the 
experimental ratio, the way the traces join up before 
the minimum however differs. Also the additional 
calculated curve for the preanneal at 80% of the glass 
temperature still increases in endothermic peak height 
unlike the corresponding experimental trace. Fig. 7a 
demonstrates what happens if the width of  the 
Gaussian (a = 0.51eV) is increased (Tf = 710K). 
The centre part of the as-quenched curve as well as the 
way the curves join up around the minimum become 
more similar to the experiment. Again the endother- 
mic peaks for the as-quenched and the 71% curves 
disagree with the experiment as does the ratio of the 
peak heights. 

An increase of  Tf to 800 K improves the result as 
shown in Fig. 7b. Now the peak ratio for the 75% 
curve is correct and the endothermic peaks for 75% 
and 80% appear at the correct temperature. Though 
the centre part of  all the curves resembles the experi- 
mental traces quite well, the endothermic peaks for the 
as-quenched curve and the 71% preanneal cannot be 
found in the result for Fe40Ni40 B20. Also the increased 
peak height for the 80% curve, as well as the way 
it joins after the minimum, are different from the 
measured traces. 

All these differences are a consequence of the uncer- 
tainty about the true shape of  the equilibrium distri- 
bution. This can be seen in comparison with results for 
other materials. Majewska-Glabus et al. [12] also give 
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Figure 7 (a) As Fig. 6 but  with increased width of  the distribution, Tf = 710K,  (b) as above but  with Tf = 800K. (r = 0.51. 

the traces for Fe40Ni40P20 (see Fig. 5). Here the endo- 
thermic peaks already appear at much lower pre- 
annealing temperatures similar to the results in 
Fig. 7b. Inoue et al. [15] have found measuring, for 
example, (Fe05Ni0.5)75Si~0Bi5 traces for the apparent 
specific heat that join at high temperatures in a similar 
fashion to Fig. 7b (see Fig. 8). 

Another effect observed by Drijver et al. [16] is also 
very well reproduced by the simulation in the AES 
model. Fig. 9 shows the measured change for an endo- 
thermic peak after longer preanneals. A qualitatively 
similar result comes out of the simulation in the AES 
model (see Fig. 10). 

7. Summary of the enthalpy 
change simulations 

In summary this paper shows that the use of T 2 a s  

temperature dependence of q~ (E, T) and a sensible 
choice of Tr do allow simulation of the main features 
of linear heating and isochronal experiments. For 
Fea0Nia0B20 the use of a Gaussian shape for the spec- 
trum of activation energies gives good agreement with 
the experimental data of Majewska-Glabus et aL [12], 
Sommer et al. [8] and G6rlitz et al. [10]. However the 
fact that two distinct Gaussians, though not very 
different in the important range, appear to give the 
best fit to the isochronal experiments and the linear 

heating experiment, respectively, underlines that the 
true shape of the spectrum is still rather uncertain. 
This is also emphasized by the deviation between the 
calculated behaviour and the experiment at high tem- 
peratures [12] or long times [10]. Both cases seem to 
indicate that the spectrum in fact levels out instead of 
rising further. The uncertainty about the true shape of 
the initial part of the spectrum however is only of the 
same order as the variation in relaxation behaviour of 
different alloy compositions. 
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~o 
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Figure 9 DSC scans of Fe40Ni40B20 after preanneals of  different 
duration (a l h, b 4h ,  c 16h, d 64h) plotted with respect to the 
second scan [16]. 
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Figure 8 Specific heat of  amorphous  (Fe0.sNi0.5)75Si10B15 for pre- 
anneals at different temperatures. Note here Cp not  Acp is plotted 
[15]. t a = 3h  (a 550K, b 600K,  c 650K,  d 700K, e as quenched). 
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Figure 10 Simulation of the effect of  preanneals of  different dura- 
tion T, = 520K (a 15min, b 1 h, c 4h)  on the measurement  of  the 
specific heat in the AES model. Tf = 710K,  a = 0.38. 
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